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It is demonstrated that when the dimensions of a semiconducting crystal are decreased to
sizes of the order of the bulk impurity-electron Bohr radius a, the impurity absorption edge
abruptly shifts to higher energies, while the absorption intensity decreases abruptly (both with-

in a few ag).

The larger the dielectric constant, the larger the dimensions at which the transi-

tional behavior occurs. Various computed results are presented for an idealized model of a
shallow impurity embedded at the center of various simple finite geometries.

INTRODUCTION

In semiconducting crystals, the impurity-elec-
tron' Bohr radius a, may exceed the interlattice
spacing by as much as a few orders of magnitude,?
depending on the values of the effective mass m*
and the dielectric constant € (ay/ay=€em,/m*,
where m, is the electronic mass, and ay~0. 53 A,
the free-hydrogen Bohr radius). So, although a
thin semiconducting crystal may contain a large
enough number of atomic layers to be described,
at least approximately, in terms of bulk (infinite-
crystal) properties, it may nevertheless be small
enough to substantially alter the motion of impurity
electrons, With recent progress in thin-film
technology, and in view of the desirability of per-
forming light-absorption experiments in such crys-
tals, ® finite-size considerations should be of cen-
tral importance in the interpretation of thin-film
data, and, specifically, in deducing bulk properties
from such data. E

In the present paper we consider a very highly
simplified model, where a single impurity is as-
sumed fixed in the center of three specific geo-
metries, illustrating cases where three, two, or
one of the crystal dimensions are (is) finite, re-
spectively: (a) sphere of radius R, (b) cylinder of
radius R, and (c) thin film of half-width R. We em-
ploy an isotropic effective mass m* and assume’

a Coulomb interaction between electron and impu-
rity. The purpose of the various simplifications
is to allow the principal physical effects in such
systems to emerge most clearly and directly, un-

hampered by unessential complications. The ex-
tension to generalizations such as nonisotropic
mass, non-Coulomb interactions, or distributions
of impurities should be evident from the develop-
ment,

For purposes of definiteness let us from this
point on speak in terms of a shallow acceptor!
with binding energy E ,= E, in the bulk, bearing in
mind that a parallel discussion follows as well for
the donor case. Neglecting various broadening
effects, impurity (assisted) absorption of light* on-
sets when the photon energy w satisfies w=E,— E,,
where E, is the energy gap. As w-E, the absorp-
tion rate increases, undergoing a new onset (edge)
at w =E, for unassisted absorption. As detailed
in various places, ® this simplified picture can be
directly generalized to include a series of impu-
rity-electron states, as well as exciton effects.

In our development we will not, for the most part,
consider such effects: rather, we emphasize the
impurity-electron ground state (gs) and its energy
E relative to the gap E,. For example, E, is the
absolute value of E in the infinite crystal (binding
energy or ionization energy). Note that in a

finite crystal the term “binding energy” is misleading,
as the gs energy E as defined here will now take on
positive values; also, one does not have a contin-
uum for energies above E, as in the infinite
crystal.

We are now in a position to point out two
principle ways in which the impurity absorp-
tion is effected for R~a, First, the gs energy E
is changed, so that the frequency at which absorp-
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tion onsets changes. Second, the absorption rate
per unit length, which is proportional to the square
of the Fourier transform*® of the electron wave
function evaluated at the photon wave vector k,
changes because the impurity-electron wave func-
tion changes, We assume that the band properties
are not significantly changed® when R~a,. ~Con-
siderations which arise when exciton effects are
accounted for will be discussed later.

THEORY

We define p=T/a,, where T is the electron-
position vector measured from the impurity center.
It is straightforward to show that the variational
energy E/E, and variational ground state y(5 ) are
related as”

EEO - _./(z‘dﬁzp*(ﬁ)(é.;—:- +-i- +V(5)>¢(5)/
[, asvone M

where  is the crystal volume and V(p) is the total
classical image potential energy®® of the electron-
impurity system ( in units of E,), which includes
interaction of the electron with both its own image -
and the impurity image, and the analogous quanti-
ties for the impurity. The various necessary
image potentials follow directly from Maxwell’s
equations and the consequent boundary conditions.®
For the sphere one obtains directly

® -1
> (hl)[(e(;;}pl] i
=1

Vs(®)=2(e-1 (@)

where ®=R/a,. Similarly, we can express V for
the thin film (leaving the result in integral form for
compactness) as

Ve(P)=28 f, de e (1 - fe )t

x{ 2 [ cosh(2kz) + Be 2*®] +2(1 + Be #%)

x[ 2cosh(2kz)y(ks) +11} , (3)
where, with the z axis perpendicular to the film,
z=z/a,, s=s/a,, @
s=(x®+9?)V2, B=(e-1)/(e+1),

and J is the Bessel function,

The net physical effect of the image potentials
is repulsion of the electron from the crystal
boundaries. We note that the kinetic energy is
~ (Ax)? while the potential energy is ~ (Ax)™,
where Ax is the effective electron range. This
effect, coupled with the (positive) repulsive poten-
tial felt by the electron near the boundary, tends
to increase E/E,, as will be reflected in the re-
sults which follow,
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We introduce one further simplification, by as-
suming we may approximate the potential seen by
the electron outside the crystal as being infinite,
This assumption is employed and discussed by
various other authors, '8
- We employ the trial wave function, with-varia-
tional parameters o, and a,,

l/)m(b, ay, a2)= exP[ _(axsz + azzz)l,z] §m(5) y (5)

where, denoting sphere by S, cylinder by C, and
film by F,

ts@)=1-p/®), tE=(1-s/®),

(6)
tr=1-2/®) .

These wave functions correctly reduce to the in-
finite crystal form for p- «, and obey the various
necessary boundary conditions as well.

RESULTS

We first consider the dependence of E/E,on ®
in the absence of an image potential V(e=1). In
this case the sphere problem can be treated ex-
actly by determining the zeros of solutions of the
Laguerre equation!® for various values of ®. . The
cylinder and film, however, do not lend them-
selves to similar simplifications and must be
treated variationally, as described above. The
results of the computations are illustrated in Fig.
1(a); in all three geometries the transition from
infinite to finite behavior occurs for ®~1-3, The
smaller the number of dimensions becoming finite,
the smaller the value of ® at which the transition
occurs, as would be anticipated from the kinetic-
vs-potential energy discussion given previously.

Note that we limit our variational computations
to values of E/E, less than zero; this is because
the particular variational § chosen clearly becomes
less and less accurate as E/E,~ 0. This may be
seen from Fig. 1(b), where the spectrum of the
sphere is labeled in terms of quantum numbers 7,
v, where!®

l/)Osze-p/VL,,, , 7

where L is the solution of the Laguerre equation
which corresponds to the Laguerre polynomials
for v integers. As v increases from 2, our'varia-
tional wave function ¢ becomes a progressively
worse trial wave function. In order to most prop-
erly continue the analysis to values of ® smaller
than the transition value, ¥ must be generalized;
we do not do this here, but we bear in mind these
limitations on the quantitative validity of the re-
sults when E/E;~ 0.

Figure 1(b) also illustrates the two lowest ex-
cited states for the spherical case for e=1, which
correspond to the degenerate 2p and 2s states of
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FIG. 1. (a) Energy E/E,
vs the characteristic crystal
dimension R/a,, for €=1, for
three geometries detailed in
the text. The sphere results
are exact (nonvariational), the
others variational. (b) En-
ergy E/E)vs R/a, for a
sphere with € =1, for the low-
est three states. The states
corresponding to various por-
tions of the curves are in-
dicated by quantum numbers
! and v arising in the La-
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the infinite system. For these states which, how-
ever, have substantially lower absorption oscilla-
tor strengths (% of the gs’s in the infinite-crystal
case) the effects of finite crystal size on E/E oc-
cur already at substantially higher values of
®~6-8, although the decrease in | E/E,| with
decreasing ® proceeds much more slowly.

When the image potentials V of Eqs. (2) and (3)
are now included in the computations, one obtains
for E/E, vs ® the results illustrated in Figs, 2(a)
and 2(b), for the sphere and film, respectively.
One notes the repulsive effect of the image poten-
tial; increasing € (i.e., V) leads to an increase in
E/E,. The variation of E/E, with € is observed to
be more pronounced for the film than the sphere,
The dependence of E/E;on €, for various values
of ®, is illustrated in Fig. 3 for the spherical
case.

0.2

guerre equation, as de-
10.0 scribed in the text.

RADIUS R/a,

We now consider the effect of finite size o the
absorption rate, which is proportional to® | ¢%(k)| 2,
where ¢%®(K)is the Fourier transform of ¥&(5).

For purposes of illustration, we consider | ¢%(0)|2,
an approximation to | ¢%(k)|> which is most appro-
priate near onset; and we define the ratio

F(®) =] $%0)12/| $~(0)|? as a convenient means of
comparing the finite- and infinite-crystal behavior.

By comparing the exact results for €=1 in the
spherical case with variational ones, one can show
that the two results for F(®) are nearly equal for
®2 2. However, prudence prevents one from con-
cluding that the use of the variational §’sare equally
good in corresponding ranges of ® for € # 1 and
other geometries. Thus (excepting €=1 for the
sphere) the variational portion of the results for
F illustrated in Fig, 4 should be viewed only as
qualitative indications of the actual behavior. In

[}
e
~

T

ENERGY E/E,

FIG. 2. (a) Energy E/E,
vs radius R/a, for a sphere,
for various values of the di-
electric constant €. Only
€=1 results are exact (non-
variational). (b) E/E; vs
half-width R/ay for film, for
various values of €.
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L
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FIG. 8. Energy E/E, vs dielectric constant € for
various values of ®(=R/q), for sphere.

the present variational treatment, F turns out to
be very weakly dependent on €, so that the e>1
results are nearly similar to those illustrated for
€=1, The present results are qualitatively simi-
lar to what one expects for free-exciton absorp-
tion, > where Foc|®(0)|2 In that case, higher E
generally corresponds to states in which the elec-
tron spends less time near the origin (states with
smaller oscillator strengths).!! For example, for
I =0 in the bulk crystal, | $(0)|2xn™, where # is
the principal quantum number. Here as well, for
a given geometry and fixed value of €, decreasing
E and decreasing F go hand in hand, as a compari-
son of Figs. 2 and 4 indicates.

DISCUSSION

The results detailed above may be summarized
briefly as follows:

Whenever the dimensions of a semiconducting
crystal approach the bulk impurity-electron Bohr
radius a,, the impurity absorption edge shifts
toward higher energies, while the absorption rate
decreases., The fewer dimensions becoming
finite, and, for a given geometry, the smaller the
dielectric constant €, the smaller the value of the
characteristic dimension(s) at which transitional
behavior occurs. The transition region is fairly
narrow, encompassing a few q, or less.

Wenow present abrief discussion of some related
works. The theory of binding energies of shallow
impurities on the plane surface of a semi-infinite
semiconducting crystal has been given by various
authors.® The present procedures can be employed
directly in conjunction with the latter work to ex-
tend the treatment to surface-state binding energies
in crystals of finite size.

Studies of the energies of (unbound) excitons in
thin films have been recently advanced. >!? Shifts
in the absorption lines with decreasing size have
been observed? for excitons in MoS,. The film
thickness was in a range where excited states, and
not the gs, werethe most substantially effected [ cf.
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Fig. 1(b)]. The theoretical treatment of Ref. 6 is
appropriate to this higher range in ® as well; good
agreement is obtained there with the MoS, results.
Variation in intensity with thickness was not dis-
cussed,

The present model is related qualitatively to the
unbound exciton problem; the analogy may be
shown to be best for the case where the hole mass
greatly exceeds that of the electron, Formally,
the present techniques are directly extendable to
the exciton case when one includes the hole (impu-
rity) kinetic energy and treats the full six-dimen-
sional system dynamically; computationally, of
course, the problem becomes significantly more
involved. The qualitative similarity of the two
problems, in any case, allows one to conclude that
the experimental observations on unbound excitons
imply the feasibility of observing identical effects
in the impurity case, The exciton results indicate
that for actual values of € (#1) the energy E does
indeed take on positive values, so that our varia-
tional results for higher values of € may in fact
be acceptable for some range in E >0,

We take note of various approximations and
simplifications employed in the development, We
have treated the impurity center statically because
of its sizable mass. Also, we have considered only
impurities in the center of various geometries,
where the gs energy is minimal, thus determining
the effective absorption edge when a nearly con-
tinuous distribution of impurities is present as
well, That E is minimal for the impurity in the
center may be understood in view of the heightened
repulsion near surfaces in the present model,
Even for €=1 in a semi-infinite crystal, for ex-
ample, the binding energy for a surface impurity
is only 25% of the bulk value,

Other simplifications and possible generaliza-
tions are: (a) The theory is straightforwardly gener-
alized to include » multiple levels with energies
E, - E, to which correspond sharp absorption edges

0.8

0.6~

INTENSITY RATIO F

0.2~

%% 3.0 5.0 7.0
FINITE DIMENSION R/q,

FIG. 4. Intensity ratio F vs R/a, for dielectric con-
stant € =1 for sphere (solid line) and for film (dotted
line). Only sphere results are exact; film results are
variational.
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at these energies, in the absence of broadening,
The edges and intensities vary for each level in a
fashion similar to that emphasized here for the gs.
(b) When (unbound) exciton effects are included, one
has, superimposed on the broad-band impurity-
assisted absorption, a set of discrete excitonlines!!
merging into a continuum at energy E,, all corres-
ponding to unassisted absorption. In the bulk, e.g.,
the ratio of acceptor-impurity to unbound-exciton
energies is (m}+m})/my, where m} and m} are
the electron and hole effective masses, As the
crystal dimensions are decreased, both sets of
lines (or edges) shift simultaneously. Note, how-
ever, that the impurity mass greatly exceeds the
hole mass of the exciton. Consequently, we ex-
pect (interactions aside) the uncertainty-principle
energy of the order of #2/m™R? which is associa-
ted with the exciton center-of-mass motion, to be
much greater than its impurity-mass counterpart;
but the larger the hole-to-electron mass ratio, and
the larger is R, the less important is this particu-
lar distinction,

The shift in absorption edges with R provides a
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possible experimental method of determining the
average dimensions of microscopically powdered,
fibrous, or layered materials. Conversely, a
knowledge of the effects of finite size on the opti-
cal properties is requisite, should it be desired
to employ powdered or similar forms of semicon-
ducting materials in optical devices.

We conclude by suggesting that the substantial
shifts in energy and decrease in intensities rela-
tive to the bulk values, which arise when crystal
thickness is decreased to the order of the exciton
Bohr radius, indicates thatthere maybe points of di-
minishing returns in employing thinner and thinner
crystals in optical-absorption experiments, Be
that as it may, the theoretical considerations out-
lined here need to be incorporated whenever the
experimenter desires to interpret his data in terms
of bulk-crystal properties.
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